Sampling density compensation in MRI: rationale and an iterative numerical solution.
نویسندگان
چکیده
Data collection of MRI which is sampled nonuniformly in k-space is often interpolated onto a Cartesian grid for fast reconstruction. The collected data must be properly weighted before interpolation, for accurate reconstruction. We propose a criterion for choosing the weighting function necessary to compensate for nonuniform sampling density. A numerical iterative method to find a weighting function that meets that criterion is also given. This method uses only the coordinates of the sampled data; unlike previous methods, it does not require knowledge of the trajectories and can easily handle trajectories that "cross" in k-space. Moreover, the method can handle sampling patterns that are undersampled in some regions of k-space and does not require a post-gridding density correction. Weighting functions for various data collection strategies are shown. Synthesized and collected in vivo data also illustrate aspects of this method.
منابع مشابه
Inverse nonequispaced FFT - Applications in MRI and numerical Stability
In magnetic resonance imaging (MRI), methods that use a non-Cartesian, e.g. spiral, grid in k-space are becoming increasingly important. This talk focuses on a recently proposed implicit discretisation scheme which generalises the standard approach based on gridding. While the latter succeeds for sufficiently uniform sampling sets and accurate estimated density compensation weights, the implici...
متن کاملNumerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions
Radial basis function method has been used to handle linear and nonlinear equations. The purpose of this paper is to introduce the method of RBF to an existing method in solving nonlinear two-level iterative techniques and also the method is implemented to four numerical examples. The results reveal that the technique is very effective and simple. Th...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملNumerical solution of Klein-Gordon equation by using the Adomian's decomposition and variational iterative methods
متن کامل
High order quadrature based iterative method for approximating the solution of nonlinear equations
In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 41 1 شماره
صفحات -
تاریخ انتشار 1999